RACE

IBPS PO PRELIMINARY GRAND TEST: IPP-170627 - HINTS AND SOLUTIONS

ANSWER KEY

1	(4)	21	(2)	41	(3)	61	(3)	81	(2)
2	(3)	22	(3)	42	(5)	62	(2)	82	(5)
3	(5)	23	(5)	43	(4)	63	(1)	83	(1)
4	(4)	24	(1)	44	(5)	64	(3)	84	(1)
5	(2)	25	(4)	45	(3)	65	(5)	85	(3)
6	(5)	26	(1)	46	(1)	66	(1)	86	(4)
7	(3)	27	(1)	47	(2)	67	(3)	87	(3)
8	(1)	28	(4)	48	(3)	68	(4)	88	(5)
9	(2)	29	(4)	49	(4)	69	(3)	89	(4)
10	(3)	30	(2)	50	(1)	70	(4)	90	(5)
11	(3)	31	(4)	51	(1)	71	(2)	91	(3)
12	(4)	32	(1)	52	(2)	72	(1)	92	(5)
13	(2)	33	(3)	53	(2)	73	(1)	93	(4)
14	(1)	34	(2)	54	(2)	74	(3)	94	(5)
15	(5)	35	(4)	55	(3)	75	(2)	95	(3)
16	(4)	36	(5)	56	(4)	76	(5)	96	(3)
17	(3)	37	(1)	57	(3)	77	(2)	97	(2)
18	(3)	38	(3)	58	(3)	78	(4)	98	(5)
19	(5)	39	(5)	59	(5)	79	(4)	99	(4)
20	(1)	40	(1)	60	(2)	80	(1)	100	(4)

- 16. Use 'later' in place of 'lately'. Lately means recently; in the recent past and later means at a time in future.
- 17. Use 'for' in place of 'with'.
- 18. Use 'unfortunate' in place of 'unfortunately'. Beings is a noun which will be qualified by an adjective.
- 19. The sentence is correct.
- 20. It should be 'He is the first film producer' or 'He is one of the film producers'.
- 21. 'many' of whom, makes the sentence grammatically correct.
- 22. The subject of the sentence *the relationship* is singular.
- 23. The sentence is correct.
- 24. It should be 'and leaves the'. Here, the subject, a *nuclear testing* is singular and the sentence is in Simple Present Tense.
- 25. 'date back to' is the correct use.

32. (1) $\frac{2}{3} \times x = y^3$ First number = x, Second number = y

$$y = \frac{12}{100} \times 50 = 6$$

$$\Rightarrow \frac{2}{3} \times x = 216 \Rightarrow x = 324$$

Sum of 1st and 2nd number = 324 + 6 = 330

33. (3) C.P. of mobile = 12000

S.P. of mobile =
$$\frac{108}{100} \times 12000 = 12960$$

C.P. of refrigerator = 10000

S.P. of refrigerator =
$$\frac{88}{100} \times 10000 = 8800$$

Profit obtained by mobile = 960 Loss obtained by refrigerator = 1200 Loss = 1200 – 960 = 240

34. (2)
$$\frac{3 \times 19 + 3 \times 32 + x}{7} = 26$$

$$\Rightarrow$$
 57+96+x=182 \Rightarrow x = 29 yrs.

35. (4) Side of square = S
Length and breadth of rectangle is *l*, b respectively.
Area of rectangle (*l*b) = 240
We don't know length, breadth exactly. So can't be determined.

36. (5)
$$\frac{7}{8} \times 1008 - \frac{3}{4} \times 968 = 882 - 726 = 156$$

37. (1) First number = x, Second number = y. $(2x + 3y = 100) \times 3$

$$(2x + 3y = 100) \times 3$$

 $(3x + 2y = 120) \times 2$

$$6x + 2y = 120) \times 6x + 9y = 300$$

$$\Rightarrow$$
 y = 12

$$\Rightarrow$$
 2x + 36 = 100

$$\Rightarrow$$
 2x = 64 \Rightarrow x = 32

Largest number = 32

38. (3) Total no. of students = $54 \times 30 = 1620$ If the students are in a row = 45.

No. of rows =
$$\frac{1620}{45}$$
 = 36.

39. (5) Anju: Sandhya \Rightarrow 13:17

$$\frac{13x - 4}{17x - 4} = \frac{11}{15}$$

$$\Rightarrow$$
 15(13x - 4) = 11(17x - 4)

$$\Rightarrow$$
 195x - 60 = 187x - 44 \Rightarrow 8x = 16 \Rightarrow x = 2

Ratio of their ages after 6 yrs.

$$(13 \times 2) + 6 : (17 \times 2) + 6$$

$$\Rightarrow$$
 32 : 40 \Rightarrow 4 : 5.

40. (1) $15 \times 16 + 25 \times 4 + x \times 40 = 80 \times 15$ \Rightarrow 240 + 350 + 40x = 1200

$$\therefore x = \frac{610}{40} = 15.25$$

- (3) Total no. of units manufactured by Company C $= (2.6 + 2.2 + 2.1 + 2.8 + 2.6) \times 100 = 1230$
- 42. (5) The no. of units Company E sold in 2007 $= 1.7 \times 100 = 1700$ The no. of units Company E sold in 2006 $= 1.4 \times 100 = 1400$

Required % =
$$\frac{1700 - 1400}{1400} \times 100 = 21.4 \approx 21\%$$

(4) No. of units sold by Company D in 2006 $\times 100$ No. of units manufactured in 2006

$$= \frac{2.2 \times 100}{3 \times 100} \times 100 = 73.33$$

- (5) No. of units manufactured by A & B in 2009: No. of units sold by A & B in 2009 \Rightarrow (100 + 240) : (40 + 130) \Rightarrow 30 : 170 $\Rightarrow 2:1$
- (4) ${}^{3}C_{2} \times {}^{6}C_{3} = 3 \times 20 = 60$ ways 45.
- (1) ${}^{4}C_{4} \times {}^{6}C_{1} + {}^{4}C_{2} \times {}^{3}C_{3} = 1 \times 6 + 6 \times 1 = 12$ ways
- Number of boys in Management

$$=3500 \times \frac{16}{100} - 1500 \times \frac{12}{100} = 560 - 180 = 380$$

Number of boys in IT

$$=3500 \times \frac{20}{100} - 1500 \times \frac{18}{100} = 700 - 270 = 430$$

Total number of boys in both = 380 + 430 = 810

Number of girls in Art = $1500 \times \frac{38}{100} = 570$

Number of boys in Science

$$=3500 \times \frac{22}{100} - 1500 \times \frac{11}{100} = 770 - 165 = 605$$

Required ratio = 570 : 605 = 114 : 121.

Total number of girls in Science and commerce together 49.

$$=1500 \times \frac{11}{100} = 165$$

20% girls from science Merged into Management, then the number of students

$$=3500 \times \frac{16}{100} - 165 \times \frac{20}{100} = 560 + 33 = 593$$

20% of girls enrolled in science = $\frac{20}{100} \times \frac{11}{100} \times 1500 = 33$.

No. of students in management = $\frac{16}{100} \times 3500 = 560$.

: After adding 33 girls to management, total students = 560 + 33 = 593.

51.
$$\frac{?}{576} = \frac{256}{?}$$

 $\Rightarrow ?^2 = 256 \times 576 \Rightarrow ? = \sqrt{256 \times 576} = 16 \times 24 = 384$

52. Suppose original fraction is $\frac{x}{v}$

$$\frac{x + \frac{200x}{100}}{y + \frac{350y}{100}} = \frac{5}{12} \Rightarrow \frac{300x}{100} \times \frac{100}{450y} = \frac{5}{12}$$

$$\Rightarrow \frac{300x}{450y} = \frac{5}{12} \Rightarrow \frac{2x}{3y} = \frac{5}{12}$$

$$\Rightarrow \frac{x}{y} = \frac{5}{12} \times \frac{3}{2} \Rightarrow \frac{x}{y} = \frac{5}{8}$$

Shortcut:
$$\frac{x + 2x}{y + 3.5y} = \frac{5}{12} \Rightarrow \frac{3x}{4.5y} = \frac{5}{12} \Rightarrow \frac{x}{y} = \frac{5 \times 4.5}{3 \times 12} = \frac{5}{8}$$

53.
$$3Y + 9X = 54$$
 ...(i)

$$\Rightarrow \frac{28X}{13Y} = \frac{140}{39}$$

$$\Rightarrow$$
 1820Y – 1092X = 0 ...(ii)

From Eqs (i) and (ii), we get

$$X = 5, Y = 3$$

 $\therefore Y - X = 3 - 5 = -2$

54. Suppose number is x

$$\therefore x \times \frac{4}{5} \times \frac{3}{4} - x \times \frac{2}{5} \times \frac{1}{6} = 648$$

$$\Rightarrow \frac{12x}{20} - \frac{2x}{30} = 648 \Rightarrow \frac{36x - 4x}{60} = 648$$

$$\Rightarrow \frac{32x}{60} = 648 \Rightarrow x = \frac{648 \times 60}{32} = 81 \times 15 = 1215$$

55. Suppose each child got x sweets.

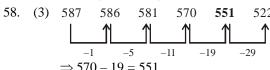
$$\therefore 112 \times x = (112 - 32) \times (x + 6)$$

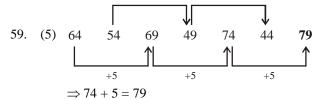
$$\Rightarrow 112x = 80x(x+6)$$

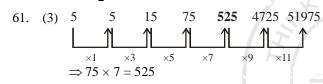
$$\Rightarrow 112x = 80x + 480 \Rightarrow 112x - 80x = 480$$

$$\Rightarrow 32x = 480 \Rightarrow x = 15$$

56.
$$\left(6\frac{3}{5} - 3\frac{4}{5}\right) \times 355 = \left(\frac{33}{5} - \frac{19}{5}\right) \times 355$$
$$= \left(\frac{33 - 19}{5}\right) \times 355 = \frac{14 \times 355}{5} = 994$$

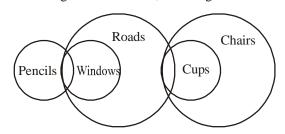

Breadth of carpet = 3 mLength of carpet = $3 \times 1.44 = 4.32$ m Original cost of carpet = $3 \times 4.32 \times 45 = T 583.20$


71-75.


Cost of carpet after increasing of length and breadth

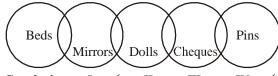
$$= 3 \times \frac{125}{100} \times 4.32 \times \frac{140}{100} \times 45 = 15 \times 1.08 \times 7 \times 9 = 71020.60$$

:. Increase (Difference) = 1020.60 - 583.20 = 7437.40

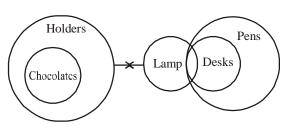

62. (2)
$$\frac{20}{100} \times 600 + \frac{10}{100} \times 900 = 120 + 90 = 210$$

63. (1)
$$\frac{249 \times 299 \times 99}{15 \times 19 \times 14} = 1847 \cong 1850$$

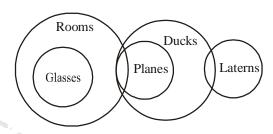
64. (3)
$$(12)^2 - (8)^2 + (6)^2 = 144 - 64 + 216 = 296 \approx 300$$


65. (5)
$$\frac{1200}{15} \times 20 + 400 = 1600 + 400 = 2000$$

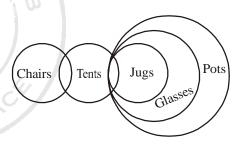
66. (1) According to the statements, venn diagram is as follow.


Conclusions: I. **×** II. ✓ III. **×** IV. **×** So, only II follows.

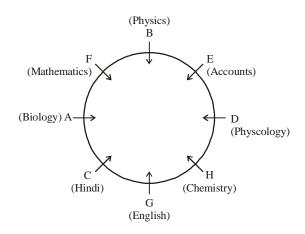
67. (1) According to the statements, venn diagram is as follow.


Conclusions : I. ✓ II. × III. × IV. ✓ So, I and IV follow.

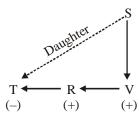
68. (1) According to the statements, venn diagram is as follow.


Conclusions: I. ✓ II. × III. ✓ IV. × So, I and III follow.

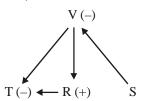
69. (1) According to the statements, venn diagram is as follow.



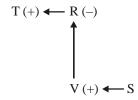
Conclusions: I. ✓ II. ✓ III. × IV. ×
So, I and II follow.


70. (1) According to the statements, venn diagram is as follow.

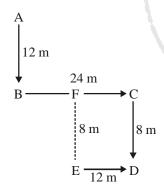
Conclusions: I. ★ II. ★ III. ✓ IV. ✓ So, III and IV follow.



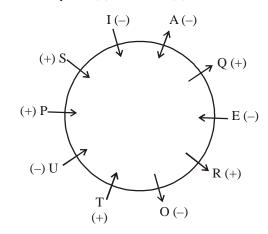
76. Given Expression, $T \times R + V + S$


Clearly, T is sister of S's son V., hence T is daughter of S.

Given expression, $T \times R + V - S$.


Hence, T is the sister in the given expression

Given expression T + R - V + S.



Hence, S is either the nephew or niece of T because six of S is not known.

79-80. According to information pictorization of points is as follow

Man will pass Point B first. Point F is 12 m West of Point C. 81-85. Boys \rightarrow (+), Girls \rightarrow (-)

IBPS PO (Prelims)

86-89. colours of the sky = ki la fa so ...(i)

rainbow colours = ro ki ...(ii)

∴ colours = ki ...[from Eqs. (i) and (ii)] sky high rocket = la pe jo ...(iii)

From Eqs. (i) and (iii), sky = la

the rocket world = pe so ne ...(iv)

From Eqs. (i) and (iv), the = so

and from Eqs, (iii) and (iv), rocket = pe

86. colours sky high = ki la jo

87. 'the'represents only'so',

88. 'pe' represents 'rocket'.

89. \therefore of the sky = la fa so

Since, colours = ki

colours of the sky = ki la fa so

 \therefore rainbow = ro

Now, we can say of the rainbow sky = la fa so ro and these four codes are in only answer options (4) and (2). But (2) is not correct because the code of 'pe' is 'rocket'.

BUILDER

Similarly S E A L I N G

 $P \odot Q \rightarrow P \leq Q$

91-95.

 $P * Q \rightarrow P \ge Q$

 $P\% Q \rightarrow P < Q$

 $P \ Q \rightarrow P > Q$

 $P @ O \rightarrow P = O$

91. (3) $J > D \leq K < R$

> R < J(False)

II. R > D(True)

III. K > J(False)

92. $(5) \quad M \ge K = R < N$

> I. R < M(or) (True)

II. R = M

III. N > K(True)

93. $(4) \quad B < H > J \ge M$

> I. B < J(False)

> II. M < B(False)

III. H > M(True)

94. (5) $Z \le K < E = R$

> R > K(True) I.

II. Z < E(True)

III. R > Z(True)

(3) $W = M \le R > F$

> I. F < M(False)

II. $R \ge W$ (True)

III. W < F(False)